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Abstract. In this paper we study the influence of line-merging
regions at the immediate long-wavelength side of a continuum
threshold on the computed model atmosphere structure and pre-
dicted spectrum. In order to model these regions sufficiently
accurately, we have developed two concepts. First, we have ex-
tended the occupation probability formalism of Hummer and
Mihalas to non-LTE plasmas. Second, in order to treat the very
complicated opacity in the line merging region, we have gen-
eralized the concept of opacity distribution functions to treat
non-LTE situations. All Rydberg states are consistently included
within this framework, so that no arbitrary cutoff of high (LTE)
levels is made. We have calculated several pure hydrogen mod-
els atmospheres for two effective temperatures, Tege = 20000
and 35000 K, and discussed the differences between models
calculated with various treatments of the line merging. In par-
ticular, we have shown that the error in the predicted profiles
of Balmer lines resulting from the neglect of line merging is
typically of the order of 3 - 4 %, while the errors in the far-UV
portion of the Balmer continuum reaches 15 - 35 %. The er-
rors generally decrease with increasing effective temperature.
At the same time, the internal accuracy of the models is shown
to be about or below 0.5% for all predicted spectral feautures.
We conclude that for interpreting current high-accuracy spec-
trophotometric observations models including the line merging
are necessary, and that the formalism developed in this paper is
capable of providing a sufficiently accurate and robust modeling
technique.

Key words: line formation — radiative transfer — stars: atmo-
spheres, early-type — ultraviolett: stars
1. Introduction

The dramatic improvements in photometric sensitivity and ac-
curacy of stellar spectroscopy in recent years necessitate cor-
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responding improvements in the models used to interpret the
spectra. Great advances have been made in improving the phys-
ical basis of these models, which together with corresponding
developments in computational algorithms have led to a much
improved understanding of the nature of stars. These develop-
ments for hot stars have been summarized recently by Kudritzki
& Hummer (1990). However systematic errors arise in model-
ing from the need to use only finite numbers of frequency and
depth points, as well as of atomic levels and transitions. These
restrictions limit the accuracy with which well known physical
phenomena can be treated.

The region of line merging on the immediate long-
wavelength side of a continuum threshold involves extremely
complex physics, which has traditionally been modeled in a
rather cavalier manner. But since errors in the representing the
opacity and radiation field in this region can affect the flux in
bands much wider than any spectral line, they are potential
sources of significant errors in the temperature distribution. The
regions of line merging are complicated for two reasons: 1) the
large density of lines and the consequent overlap couples the
radiation field in many lines; 2) as high-lying atomic levels are
strongly perturbed they are broadened and finally dissolved.
These considerations are also crucial in evaluating the internal
partition function, although in the present paper this plays a
minor role.

The dissolution of high-lying atomic levels by plasma per-
turbations has been treated by a number of authors in terms of
occupation probabilities, which for LTE plasmas can be defined
as the ratio of the level populations to those in the absence of
perturbations. A phenomenological theory for these quantities
has been given by Hummer & Mihalas (1988 — hereafter HM),
who discuss at length earlier work in this area. Expressions
for the optical properties of the plasma in terms of occupation
probabilities have been given by Déppen et al. (1987 — hereafter
DAM). Seaton (1990) has extended these results by developing
a line-broadening theory that goes over smoothly into line dis-
solution as the strength of the perturbations increases. These
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theories have received strong support from the agreement of
their predictions with laboratory plasmas and observed spectra
of white dwarfs (Bergeron et al. 1991).

In this paper we extend the use of occupation probabili-
ties to non-LTE plasmas. This extension represents a non-trivial
generalization of the LTE theory, as the equations of statistical
equilibrium must be generalized in a unique and unambiguous
manner, i.e. more is involved than arbitrarily multiplying level
populations by occupation probabilities. Moreover, we use ex-
pressions for occupations probabilities generalized from those
of HM to account for electron correlation in the plasma as well
as radiator charge. Finally, in order to treat numerically the very
complicated opacity in the line-merging region, we have devel-
oped a new approach based on the concept of opacity distribu-
tion function.

The resulting description of the upper levels of the higher
Lyman and Balmer series is used to compute several pure hydro-
gen model atmospheres with Teg= 20000 and 35000 K. These
are used as standards to judge the accuracy of various approxi-
mations and numerical treatments.

2. Level dissolution in non-LTE plasmas
2.1. Physical basis of the occupation probability formalism

As discussed by HM and DAM, the conceptual basis of the
occupation probability picture can be expressed by writing the
LTE population of level  as

N} [Nyt = w;g; exp(—E; /kT)/Z, 2.1
where w; is the occupation probability of level i, g; the sta-
tistical weight, E; the excitation energy of level ¢, and Z the
internal partition function. The asterisk denotes the equilibrium
(LTE) population. Physically, w; is the probability that the atom
in question is in state ¢ relative to that in a similar ensemble of
non-interacting atoms. (Throughout we refer to the species in
question as an atom, regardless of its charge state.) Correspond-
ingly, (1 — w;) is the probability that the state ¢ is dissolved,
i.e. lies in the continuum. The essential approximation is that
a certain fraction of the atoms in level i are completely unaf-
fected, while the remainder are unable to support a bound state
at the corresponding energy. The detailed physics is discussed
by HM.

Consequently, the wavefunctions and energy eigenvalues of
the undissolved atom are just those in the absence of perturba-
tions. Thus the oscillator strengths and other atomic transition
rates remain unchanged; the only concept which is changed is
the interpretation of the final state of an atomic transition. Now
a transition from a certain state 3 to another state j, j > 1, may
leave an atom either in the bound (undissolved) state 7, or in
the ionized state at the same energy (i.e. in a certain state of the
next higher ion plus free electron), if the state j is dissolved.
More precisely, in an ensemble of identical atoms, the transi-
tion ¢ — j will leave a certain fraction of atoms in bound state j
and the complementary fraction in an ionized state at the same
energy (dissolved state j).
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It follows from (2.1) that the partition function in this picture
is (HM)

Z = wigiexp(—E;/kT).

i=1

(2.2)

Since w; monotonically decreases with i, and quickly ap-
proaches zero when ¢ exceeds some value depending on the
local conditions, this expression avoids the divergence of the
classical partition function, as well as with artificial cutoff pro-
cedures.

The Saha ionization equation can then be written in the usual
form, viz.

Nj/Nya =ne(Z1/2Z5)(R*[2rmkT)*/? exp(x.s /kT),
(2.3)
where the partition functions are defined through (2.2), i.e. they
reflect the dissolution of certain states. Since level dissolution
is accounted for in the partition functions, the lowering of the
ionization potentials, which is ill-defined (see the discussion in
HM), does not appear. In Eq. (2.3), x s is the free-atom ionization

potential, and all other quantities have their usual meanings.
In order to demonstrate the role of level dissolution in a
realistic stellar atmosphere, we display in Fig. 1 the dissolution
probabilities (1 — wy,) for the first 80 levels of hydrogen for
a pure-hydrogen model atmosphere with Tei= 20000 K, and
log g = 4, as a function of the principal quantum number and
the depth in the atmosphere (in g/cm?). The latter reflects the
dependence of the occupation probability on temperature and

electron density.

2.2. Opacity and emissivity

Expressions for opacities and emissivities in the occupation
probability formalism, assuming LTE, have been already given
by DAM. We now generalize their formalism to non-LTE situ-
ations.

The absorption coefficient of atoms in level ¢ (temporarily
ignoring stimulated emission ) at frequency v due to all possible
transitions ¢ — j, (£; > E; — we will denote this property as
j > 1), including bound—free absorption, is given by

2
abs . me df ij —ap. df ij
X; @) =mn; pogs E [w + (1 wj) i

2 i :| + 0;,(v)
> :

2.4)
The first and second terms in the square brackets, respectively,
represent transitions to the undissolved (bound) part of state
J» which occurs with probability w; (type a in the notation of
DAM), and to the dissolved component of state j at the same
energy (with probability 1 —w;); the latter is a bound—free tran-
sition extrapolated below the unperturbed threshold(type b of
DAM). The last term represent the opacity due to true bound—
free transitions. This expression refers to only the undissolved
(i.e. existing) atoms in state 7. The transitions from a dissolved
state ¢ to a higher (also dissolved) state j are free—free transi-
tions, and are automatically included in the free—free opacity.
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Fig. 1. Probability of level dissolution, defined as 1 — w, w being the o
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ccupation probability, as a function of the principal quantum number, and

the depth in the atmosphere (expressed as a column mass in g/cm?), for a representative pure-hydrogen model atmosphere with Tee= 20000 K,

log g = 4 (model A of Sect. 4)

In the first term, the factor df;; /dv may be written to a good
approximation as f;;@;;(v) (see DAM), where f;; is the usual
oscillator strength, and ¢;;(v) the normalized absorption profile
coefficient ([ ¢;;(v)dv = 1).In the second term, we observe that
the factor 1 — w); varies very slowly with j for large j (in fact,
it approaches unity), and may be taken out of summation. We
will therefore write for sufficiently large 5

w) Y d”

j>i

da- wj)df’J

>

~ (1 —

= [1 - w* W)]oik (),

2.5)
where o;,(v) is the extrapolated photoionization cross—section.
The latter equality follows from continuity of the line and con-
tinuum oscillator strength density (see, for instance, Fano &
Cooper 1968), which was also used by DAM. The true absorp-
tion coefficient (2.4) may then be written as

XD W) = n; {Z w;oi; (V) + UE?J(V)} , (2.6)

J>i

where

2
e
o;(V) = %fij(ﬁij(l/) ()
is the bound-bound cross—section, and
oin = Di(W)osn(v), (2.8)
where
1, ifv 2> v
o { Loy a-wp¥s ity <u, s @9
>

here v;,, is the free atom ionization frequency.
In analogy with DAM we call D;(v) the dissolved fraction.
However, their dissolved fraction is given by (see Eqs. 32 and

31 of DAM)
—1/2
) (2.10)

The effective quantum number n* designates the highest state
that can be reached from state ¢ by the absorption of a photon

hv
XION

w; —w
D?AM(I/) — n * _

" 1
n - =
w; i2

)
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of energy hv. As n* defined by Eq. (2.10) need not be an in-
teger, wp+ is computed from an analytical expression for the
occupation probability (see Appendix A).

Our formulation thus differs from DAM in two aspects:

i) The DAM form of D(v) is based on heuristic arguments,
while our formalism gives a prescription for calculating the
dissolved fraction (although in practice the DAM form is
probably a good approximation); and

ii) our expression does not contain the occupation probability
of the lower level, w;. This is because we use conditional
probabilities, namely that if an atom in state % is undissolved,
the probabilities of transition ¢ — j to the undissolved and
dissolved parts of the state j are equal to w; and 1 — w;, re-
spectively. It is this introduction of conditional probabilities
that makes possible the generalization to NLTE conditions.

In contrast, DAM write n; = nf + nﬁ-’, and take the pop-
ulations n¢ and n! be representative of the two possibilities.
The populations n¢ and nf are in turn expressed through the
probabilities w? and w?, which represent the joint probabilities
that (a) state ¢ and state j are both undissolved, and (b) state i
is undissolved and state j is dissolved. The sum of probabili-
ties w® and w® is therefore equal to w; (< 1), so that in order
to satisfy the above expression for populations one has to put
n? = (wj/w;)n; and nt = [(w; — w;)/w;In;. However, this
means that these populations reflect the fact that state ¢ may be
dissolved, which is in conflict with the physical meaning of Eq.
(2.4) or (2.6).

However, this difference is primarily conceptual and it is
unlikely to be important in the present application, since the
line merging to the series limit is important for spectral series
with low lying starting levels (as, for instance, the Lyman and
Balmer series of hydrogen), where the occupation probability
is very close to unity anyway. For all practical applications, we
will adopt for D; the DAM form (2.10) with w; = 1.

It remains to specify the spontaneous emission coefficient;
in general the coefficient for stimulated emission is

W) = (/20 Pt () I (v),

I(v) being the specific intensity of radiation. The contribution
of downward bound—bound transitions is given by

%IZ_—J njAjiwi,

3>i
where Aj; is the Einstein coefficient for spontaneous emission.
Now the state j is the initial level, so the number of undissolved
atoms in state j is correctly described by n;, but we must in-
clude w;, the probability that the final state is undissolved. The
contribution of free-bound transitions is simply given by

(2h1? | *) exp(—hv [ KT)n,.(n; /1) 04 W)w;,

which follows from the Einstein—Milne relations for the contin-
uum. Because these relations are independent of the ionization
limit the usual relations between the photoionization and re-
combination cross—sections remain valid.

1. Hubeny et al.: NLTE model stellar atmospheres with line blanketing

Using the relation between the Einstein A coefficient and the
oscillator strength, and the definition of the bound—bound cross—
section, we may write for the emission coefficient at frequency
v due to all possible transitions ending at state i

@) = Ch/? /cz)wi

> ni(9i/99)0:5() + nf exp(—hv /K)ol (v)
j>i
(2.11)

Finally, we give the form of absorption coefficient corrected
for stimulated emission,

xi(v) = Z [wjn; — win;(9i/95)] oi; W)
>0
+ [ni — win] exp(—hv/kT)] o).

K

(2.12)

2.3. Statistical equilibrium

Let us formulate the statistical equilibrium equation for state
1. We stress again that since the population n; represents the
number density of atoms in undissolved state 4, all transition
probabilities ¢ — j used in the rate equations should be un-
derstood as conditional probabilities, given the state ¢ being
undissolved.

2.3.1. Collisional rates

‘We can express formally the total rate of collisional transitions
out of state i as

n; E w;Cyj + Z(l —w;)Ci; +Ci |
i J#

(2.13)

where the quantity C;; in the first term is the collisional rate for
the transition ¢ — j to the unperturbed fraction of state j, while
in the second term C;; represents ionization into the dissolved
fraction of this state. C;, is the collisional ionization rate in
the absence of level dissolution. The second term is logically
combined with the normal rate to form the effective ionization
rate coefficient

C:?: = C,m + z(l — 'lUj)Cij.
J#i

(2.14)

Unlike the photoionization rate, which depend on the (a priori
unknown) radiation field, the complete collisional ionization
rate may be easily evaluated from Eq. (2.14).

The total number of collisional transitions info the state i is

tot
w; E ’I’ZjCji + nkC,fi y
JF

(2.15)

because now state 4 is the final state of transitions j — 4, and
therefore probability that it is not dissolved has to be taken
into account. Obviously, the remaining fraction of transitions
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Fig. 2. Two-dimensional plot of the absorption cross-section (defined by Eq. 3.5) near the Lyman discontinuity for a pure-hydrogen model
atmosphere with Teg= 20000 K, log g = 4 (model A of Sect. 4). The cross-section is plotted as a function of wavelength and depth in the

atmosphere, analogous to Fig. 1

to the dissolved component of state i does not have to be dealt
with explicitly, because these transitions are in fact collisions
between ions and therefore do not contribute to the population
of true, undissolved, atom in state i (recall the meaning of the
population n;).

From the detailed balance relation for the transition ¢ < j

n;w;Ci; = njw;Cji, (2.16)

we obtain

Cji _ _T_L':_‘El - 9 exp[(E; — E;)/kT1,

(2.17)

where the occupation probabilities cancel out and one recovers
the standard relation between upward and downward rates. This
is consistent with our basic picture that the wavefunctions (and
therefore energies and transition rates) remain unchanged.

Analogously, we find for the total collisional recombination
rate

Cii = (ni/ne) Cir. (2.18)

2.3.2. Radiative rates

Analogously, the total rate of radiative transitions out of state %
is given by

n; Z ijij + Z(l — wj)Rij + RiK. y
J# J#i
where R;; in the first term is the radiative rate for the transition
i — j, given by
Rii= Aij'fBijjija ifi > j;
*J B,;jJij, ifi < 75

(2.19)

(2.20)

here J;; = [ J,,dv is the frequency averaged mean intensity
of radiation, and A and B are the usual Einstein coefficients.

Just as with the collisions, we write the total rate to the
dissolved upper states as

me? 4w
S0y = ST o~ [ v i)
7 j>
me? 4x
" ‘me hvg /dVJ” D (U —w)fijdi@).

>t
(2.21)
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The summation in the second line is precisely the term (1 —
w*)o;, we have introduced for description of opacity — see
Eq. (2.5). A contribution from the transitions with j < 4 does
not appear as this would correspond to the unphysical case of a
transition from an undissolved upper state to a dissolved lower
state. We may reasonably assume that w; ~ 1 for j < 4, and
therefore the contribution of all terms with j < ¢ is negligible.
The total ionization rate from level ¢ is then

RZ = Rig+ Y (1 —wj)Ri; = / dv, o), (2.22)
j>i

where o' (v) is given by equation (2.8). This is a very desirable

feature, because the same bound—free cross—section is used in

the expressions for absorption and emission coefficient, as well
as in the rate equations.

2.3.3. Complete rate equations

Using equations (2.13) — (2.22), the complete rate equation for
state ¢ is written

n; Zw](C” +Rij)+C§’jj+R§‘,’§ =
JF

w; Z n;(Cji + Rj;) + (nz/nn)*(oﬁt + RES:
J#

(2.23)

3. Numerical treatment of the line-merging opacity

The opacity, as given by Eq. (2.12), is a very complicated func-
tion of frequency. We demonstrate this in Fig. 2, where we plot
the total absorption coefficient near the Lyman discontinuity for
a pure-hydrogen model atmosphere with Tes= 20000 K, log g
= 4, as a function of the wavelength and the depth in the at-
mosphere. The latter reflects the dependence of the opacity on
temperature and electron density.

An inspection of Fig. 2 reveals several important features.
The opacity is a much smoother function of wavelength at large
depths than near the surface. Deep in the atmosphere the den-
sity is high, and consequently lines are broad and merge to the
continuum at relatively large distances below the threshold. In
contrast, near the surface where the density is low, the individ-
ual lines are very narrow and merge to a continuum only for
very high series members. These are well-known features; an
approximate expression for the last visible line as a function of
electron density is known as the Inglis-Teller formula (see Mi-
halas 1978). Our formalism is physically more refined than the
simple Inglis-Teller formula, but the basic picture is similar.

In the present context, Fig. 2 makes clear the numerical
problems encountered in a treatment of line merging. The ob-
vious, direct approach of selecting a set of frequency points
to reproduce the shape of opacity closely enough so that the

- frequency integrations needed to evaluate the relevant radiative

and heating rates are accurate requires an enormous (therefore
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impractical) number of points. Indeed, one would have to re-
solve all the individual lines near the surface, as an improper
choice of integration points would simulate spuriously broad
lines and cause errors in the atmospheric structure. Numerical
experiments confirm that the direct method is not only very time-
consuming but also, and most importantly, offers no guarantee
that an adopted choice of frequency points is indeed sufficient.
Moreover, such an analysis would have to be repeated for dif-

_ferent stellar classes.

A straightforward way of dealing with this complex struc-
ture is through opacity distribution functions (ODF), appropri-
ately generalized to NLTE conditions. In this approach one
resamples the discretized monochromatic opacity to obtain a
monotonic function of frequency in each of the previously spec-
ified frequency regions. The corresponding frequency integrals
are unchanged, but are calculated using substantially smaller
numbers of integration points - see Fig. 3. For a review of the
ODF method applied in LTE situations, see e.g. Carbon (1984).

This idea may be implemented in two different ways in
which the line-merging opacity is treated as: 1) an extension
of the corresponding continuum opacity; or 2) an individual
“superline”. We shall refer to these choices as the continuum
and the superline approaches. Both variants offer advantages
and suffer drawbacks. We have implemented them both, which
has the very important benefit of allowing us to assess the overall
internal accuracy of the statistical approach, because both vari-
ants differ not only in a different treatment of the line-merging
opacity, but also in various physical assumptions which have
to be made. As we show in Sect. 4 and 5, the results of both
approaches are very close indeed, which gives additional cred-
ibility to our models. In the following, we shall describe both
variants in more detail.

3.1. Line—merging opacity treated as an extension of continuum

We rewrite Eq. (2.12) as

Xi(V) = X3 W) + X" ), (3.1)
where
i NL
X () = Z [wjn; — win;(g:/9;)] oi; ), 3.2)
J=i+1
and
o
X)) = Y [wini —wing(gi/))] oi;w)
j=NL+1
+ [n; — win} exp(—hv/kT)] ol (w). (3.3)

Here, the first NL levels and transitions between them are
treated explicitly. All lines in Xf“e(u) are treated separately;
every line has its own set of frequencies for the numerical eval-
uation of the corresponding integrals. Likewise, the statistical
equilibrium equations are solved for levels ¢ = 1,..., NL (the
“NLTE levels” which we designate as “explicit levels”). The up-
per levels are assumed to be in LTE with respect to the ground
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state of the nextion. V* is the highest level considered; it should
be chosen sufficiently large to guarantee that the levels higher
than N* are essentially dissolved at all depths in the atmo-
sphere. In the calculations described in Sect. 4 we have adopted
N* = 80, but also computed a test model with N* = 150 as a
check.

Treating the higher states in LTE and assuming that contin-
uum transitions ¢ — « end in the ground state of the next ion,
(the case of ionization to an excited state is a trivial generaliza-
tion), Eq. (3.3) may be written as

X W) = [n; — win] exp(—hv/kT)] 5;(v), 3.4
where
N*
Gin(v) = W) + Y wio). (3.5)
j=NL+1

In deriving Egs. (3.4) and (3.5), we have replaced
exp(—hv;; /kT) (v;; being the frequency of the transition — 5)
by exp(—hv/kT)). This assumption can be relaxed, but at the
cost of introducing three different cross—sections for absorp-
tion (defined as in 3.5), stimulated and spontaneous emission.
Although it would be easy to incorporate three different cross-
sections represented by three different ODF’s into the formal-
ism, it would require a large amount of computer memoxy. In
any event, the assumption of equal absorption and emission
cross sections is quite accurate. Moreover, in deriving Eq. (3.4)
we have ignored another difference between the cross-sections
corresponding to the absorption and emission. In fact, Eq.(3.4)
should be written as

XPMW) = mig® W) — win exp(—hv/kT)EE (), (3.4a)
whereo 2 (V) = 6;,(v) as given by Eq. (3.5), while
N*

oRw) + Y (wijw)oi;v).

j=NL+1

5w = (3.50)

Replacing 655 (V) by ;,.(v) is justified because the line merging
opacity is important for transitions from low-lying states (n = 1
or 2), for which the corresponding occupation probability w; is
very close to unity.

The last step is to resample the cross—section (3.5) on the
frequency interval v; n;, < v < v;, (i.e. between the last ex-
plicit line of the spectral series originating at level ¢ and the
true threshold) to obtain a monotonically decreasing function

of frequency, G9PF - see Fig. 3. The complete cross-section is
then
ODF azn(V), if v 2 Viks
) = { FOOFifv <y (3.6)

In this formalism, the contribution of high series members to the
opacity/emissivity and to the statistical equilibrium (radiative
rates) is represented simply by replacing 0% (v) by o 2P (v) in
the expressions for absorption coefficient, emission coefficient,
and the radiative rates, Eqs. (2.12), (2.11), (2.22), respectively.

3.2. Line—merging opacity treated as a superline

Another way of treating the line-merging opacity is to form a
separate “supermultiplet”, or a “superline” rather than to include
it in the continuum. To this end, we have to introduce several
concepts. A similar approach was also applied by Anderson
(1989), who used this idea to group the energy levels of the
iron-peak elements.

First, we group all levels j = NL+1,..., N* to one “su-
perlevel”, (or merged level) which will be denoted as J. The
basic physical assumption is that all real levels j forming the
superlevel J have a common NLTE departure coefficient, or, in
other words, all components j are in LTE with respect to each
other. Their common b—factor may, however, be different from
unity. The population of level J is defined as

N*
E nj.

3.7
j=NL+1
Defining the statistical weight as
N*
D" w,g; exp(E;/kT), (3.8)
j=NL+1

where E; is the ionization energy from level j (i.e. the ionization
energy from the ground state minus the excitation energy of level
7) and formally setting

wy=1, (3.9)
because the occupation probabilities are already considered

in the statistical weight, Eq. (3.8), we may write the Saha—
Boltmann factor as

¢s(T) = CT3%g;/(2gs),

This correspond formally to setting the excitation energy E; =
xion- The LTE population of level J is now given by the usual
expression,

nYy = nenxd (1),
where the constant C' = 2.07016 x 1071°, and & denotes the
ground state of the next ion.
The opacity from all transitions starting from level 4, Eq.
(2.12), may now be written as

Xi@) = Xi"W) + X7TEW) + x$w), (3.10)

where X" is given by Eq. (3.2), but x°™ contains only the
second term of the r.h.s of Eq. (3.3), and is given by

XMW) = [ni — win} exp(—hv/kT)] o). (3.11)
The remaining contribution from transitions to all components
of the merged level, i.e. one superline, is given by

X () = [ —mﬂ"—] o1s(V), (3.12)
9J
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where the “absorption profile” of the superline, ;7 (v), is given
by

N
o;0(V) = Z w;055(V).

j=NL+1

(3.13)

Again, the stimulated emission term as given by the second
term on the r.h.s. of Eq. (3.10) is an approximation, based on
the expression

N*

Z w; exp(—hv;; /kT)o;5(v) ~
j=NL+1
N*
exp(—hv/kT) Y w;oi(). (3.14)
j=NL+1
In the same approximation, the emission coefficient is
2h13 :
M) = wing Lo w). (3.15)
9J

Equations (3.12) and (3.15) are identical to the expressions for
the opacity and emissivity of a normal line, replacing j (indicat-
ing a single level) by J (indicating a merged level). In fact, an
analogous approximation is often made for spectroscopic multi-
plets, replacing the individual energy eigenstates by an averaged
level, and the individual components of a multiplet by a single
line. In the present case, there are many components forming
the supermultiplet and, moreover, the level dissolution is taken
into account which means that a different number of lines ef-
fectively contribute to the supermultiplet at different depths in
the atmosphere. Also, unlike genuine multiplets, where a single
line representing the multiplet is assumed to have the same ab-
sorption profile (for instance, a Voigt profile), the present case
is more complicated. However, we may construct a resampled
opacity to obtain an ODF, which is then represented by a rela-
tively small number of frequency points. Formally, this is rep-
resented by replacing everywhere

ODF
o) — o5 @)

Level J thus formally behaves as a normal level, and all
usual expressions for absorption and emission coefficients, and
radiative rates are unchanged if we substitute o2PF (1) for an
ordinary absorption profile o;;(v). To complete the formalism,
we need explicit expressions for the photoionization cross sec-
tion from the merged level, and for collisional rates between
the ordinary (explicit) levels and the merged level, which are
respectively

N*
1
orW) = — Y wjg;exp(E;/kT)oju(v),  (3.16)
97 ;N
and
N
Cje = — Z w;g; exp(E; /kT)Cjy, (3.17)
97 NI+
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Finally, the collisional excitation rates are given by

N*
Cig= E Cij.
Jj=NL+1

(3.18)

Downward collisional rates are given by the standard expres-
sions.

3.3. Comparison of the continuum and the line approach

The line approach is more elegant, allows greater flexibility, but
is slightly more complicated to code. On the other hand, the
continuum treatment can be implemented by a very straight-
forward modification of any existing model stellar atmosphere
code. In addition to supplying routines for the evaluation of
the resampled cross-section o9PF(v), the only modification to
the program is that of allowing the continuum cross-sections
be generally depth-dependent. Obviously, another modification
is necessary to include the occupation probabilities, but this is
common to both treatments.

An essential disadvantage of the continuum approach, how-
ever, is its inflexibility concerning the treatment of frequency
points. All the integration points representing the ODF part of
the continuum cross-section (of the order of 10 to 20 points per
ODF) have to be treated on the same footing as the integration
points for the corresponding continuum. If one uses a method
based on complete linearization, as we do, all frequency points
inthe ODF’s have to be the “explicit” frequency points, i.e. those
in which the radiation intensities are linearized. Since for com-
plete linearization the computer time scales roughly as the cube
of the number of unknowns, the increase of the computer time
due to ODF’s may be appreciable (although obviously still by
orders of magnitude smaller than by treating the line-merging
opacity directly).

Another disadvantage is that if we choose to perform a set of
equivalent-two-level-atom (ETA) procedures between two suc-
cessive linearizations (which in some cases may speed up con-
vergence or even prevent divergences; for details, see Hubeny
1988), for a continuum which is supplemented by an ODF (a
typical example being the hydrogen Lyman continuum supple-
mented by the Lyman lines ODF), the ODF frequency points
have to be included in the ETA procedure, which may take ex-
cessive computer time.

On the other hand, the superline approach avoids the above
problems completely. The superlines may be treated as “fixed-
option” transitions (see Hubeny 1988), which means that they
are treated essentially exactly, but their radiative rates are not
linearized. As discussed by Hubeny & Lanz (1992a), treating
many transitions in the fixed option increases somewhat the
number of iterations but the reduction of computer time per it-
eration may be enormous. Also, by treating the ODF’s as fixed
transitions we can afford to represent the ODF by more fre-
quency points, which obviously increases the internal accuracy
of the models. We have performed many tests and verified that
treating the ODF’s as explicit or fixed transitions always gives
the same atmospheric structure (for instance, the temperature
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Fig. 3. Exact opacity due to Lyman lines (short dashes), and pseu-
docontinuum (dotted line), together with its representation in terms
of opacity distribution functions. The long-dashed line is the “contin-
uum” ODF, obtained by resampling the total, lines + pseudocontinuum,
cross-section (Eq. 3.5); the full line is the representation in the “line”
ODF formalism (Sect. 3.2. - Egs. 3.13 and 3.10), where only the true
line opacity (short-dashed line) is resampled, and the pseudocontinuum
part is then added. The circles indicate the frequency quadrature points
used to represent the corresponding ODF’s in the model calculations;
filled circles — the line ODF, and empty circles — the continuum ODF.
The cross-sections and ODF’s are plotted for two depths in same model
atmosphere as in Figs. 1 and 2, Tegr= 20000 K, log g = 4 (model A of
Sect. 4). Upper panel: the region of temperature minimum (cf Fig. 4).
Lower panel: the region of formation of the far-UV continuum. The
values of temperature and electron density are indicated in the upper
left corner of the panels

difference was found to be less than 0.1 K everywhere in the
atmosphere for all test calculations).

Very recently, we have developed a new method which al-
lows us to linearize even the “fixed rates”, in which the only
quantity held fixed during the subsequent linearization step is
an approximate lambda operator. The convergence rate is much
higher than with using the traditional formulation of the fixed-
option transitions. This method is therefore a hybrid combining
complete linearization and the class of modern methods called
accelerated lambda iteration (ALI — for a preliminary account
see Hubeny & Lanz 1992b), and will be described fully in a
forthcoming paper. Using this method, the advantages of the
superline treatment of line merging is quite obvious. Finally, an
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important advantage of the superline treatment is the ease with
which it can be generalized to treat line overlap, such as that
between hydrogen and ionized helium. We shall consider this
problem in a future paper.

The basic physical difference between the continuum and
the line treatment of line merging is relatively subtle. As follows
from a close inspection of Egs. (3.3) and (3.11), the continuum-
option ODF contains the contributions from both the “pseudo-
continuum” (i.e. transitions from level 7 to dissolved states in-
cluded in 0! (v) ) as well as from the genuine lines. In contrast,
the superline-option ODF contains only the latter contribution,
and the “pseudocontinuum” contribution has to be treated sep-
arately, namely as a extension of the true continuum. Since the
internal cross-section to be resampled is different in these two
approaches, the corresponding ODF is also different.

In using the ODF approach, one is free to choose the exact
position of the peak of the ODF. A sensible strategy is to place it
near the frequency where the original opacity has its maximum.
In both cases, the position of the peak is chosen to lie between
the last explicit line and the next higher line already incorpo-
rated to the ODF (for instance, if we consider 8 lowest levels of
hydrogen as explicit, then the peak of the Lyman-line ODF is
located between lines 1-8 and 1-9; and similarly for the Balmer
ODF). The opacity then decreases with decreasing wavelength,
and reaches a minimum just longward of the threshold. In the
superline option, since the pseudocontinuum is treated directly,
the total opacity (ODF + pseudocontinuum) first decreases with
decreasing wavelength and then starts to increase due to the
increasing opacity in the pseudocontinuum. This behavior is
illustrated in Fig. 3.

In addition to all the advantages of the superline-option ODF
discussed above, we feel that also the shape of total opacity
better reflects the original opacity. In any case, the difference in
model structure obtained with the two approaches provides us
with a measure of the internal accuracy of the ODF approach.
We shall return to this point in Sect. 5.

Finally, we would like to stress the following point. We are
using the notion of ODF, which was traditionally used in the
context of LTE. The basic differences between the NLTE and
LTE implementations of the idea of ODF are: i) in LTE, all lines
of all chemical species in a given frequency interval are grouped
to one ODF; ii) here, a separate ODF is constructed not only for
individual atoms and ions, but also for the individual groups of
lines such as the Lyman and Balmer series; iii) NLTE ODF’s are
used not only in the radiative and the hydrostatic equilibrium
equations (as in LTE), but also in the statistical equilibrium,
through the radiative rates to and from the superlevels, as well
as through the contributions of superlevels to the radiative rates
of the transitions which overlap them.

The idea of NLTE ODF is not limited to the treatment of
transitions between the explicit states and higher, partly dis-
solved, states, as described here. The same idea may be applied
to any groups of levels, which is particularly useful for species
with a complicated energy level structure, in particular the iron
group elements. In this context, a similar approach was already
used by Anderson (1989) and Dreizler & Werner (1992) for a

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...282..151H&db_key=AST

FT992A&A. © Z 2827 “I51H:

160

Table 1. Characteristics of the model stellar atmospheres: number of
NLTE levels and frequencies (total and linearized), and type of line
profiles.

Model NLTE  Frequencies Profiles
levels tot. lin.
A 8+1% 362 160  Stark
B 8 362 203  Stark
S 8 291 174  Stark
N 8 228 111 Doppler
A’ 8+1% 446 202  Stark
X 12+1% 540 203 Stark

“ Merged level,n=9,..., 80
® Merged level, n = 13,.. ., 80

statistical treatment of NLTE line blanketing due to various ions
of iron. Our approach, the first results, and a comparison to the
above mentioned studies, were briefly presented in Hubeny &
Lanz (1992b). We shall defer a more detailed discussion of our
general NLTE ODF approach to a forthcoming paper.

4. Nlustrative examples and discussion

To demonstrate the importance of a correct treatment of occupa-
tion probabilities and of the line merging near the series limits,
we assume for simplicity a pure hydrogen atmosphere. We have
selected two effective temperatures, Teg= 20000 and 35000 K,
and log g = 4, to assess the importance of these phenomena for
main sequence early B and early O stars. We are also study-
ing these effects in early A stars and white dwarfs, for which
the effects are obviously largest; the results will be presented
elsewhere.

In all models, departures from LTE are allowed for 8 lowest
(explicit) levels; the higher levels up to n=80 are populated ac-
cording to Eq. (2.1), ie. LTE with occupation probabilities. All
lines between the explicit levels are included. The calculations
were carried out using the model atmosphere code TLUSTY
(Hubeny 1988), upgraded by various acceleration schemes as
described by Hubeny & Lanz (1992a), and modified to include
occupation probabilities and line merging opacity.

For both effective temperatures, we have calculated four
models differing in the treatment of the Lyman and Balmer lines
- see Table 1. Model N represents a “classical” model, i.e. with
no opacity due to high members of the Lyman and Balmer series.
The continuum edges are treated as sharp, as in most previous
studies, and Doppler profiles are assumed for all lines. Model
S differs from model N only in that Stark profiles are taken for
the Lyman and Balmer lines. As in both cases the profiles are
taken as depth-dependent, the frequency integration weights are
depth-dependent in order to guarantee the exact normalization
of the profile function. We note that the comparison between
models N and S is analogous to the study of Rauch & Werner
(1988).
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T,,=20000K, log g=4
HRAALL IELUAAALL BELILRALL IRLELA) AL BELILALL

i amasi =P
200001 — model A 1
——__ model B 1
18000~ __ . model S 1
[
16000{ b
|
14000 -
J
120001 Ha Hy 4300 1100 ]
4
of e -
] T ~
———————— - N S AN -,
\‘\.\. \ / Vi
™y \/ /
& 500 \ -
\ i
\ i
Voo
Voo
v
~1000}- \ E
\ g
ol s vvvd ool ol vl v b i il i
10-¢ 10-% 10-¢ 10-3 0.01 0.1 1 10 102
DM [g em-2]

Fig. 4. Plot of the temperature (upper panel), and the temperature dif-
ferences with respect to model A (lower panel) for the models A, B,
S, N, for Teg= 20000 K, log g = 4. The abscissa is the depth in the
atmosphere expressed as a column mass in g/cm?

Models A and B represent the “exact” model as far as the
treatment of level dissolution and line merging is concerned.
Model A uses occupation probabilities and the line ODF to
treat the line merging, while model B uses the continuum ap-
proach. As discussed in Sect. 3¢, the comparison of A and B
gives information about the internal accuracy of our modeling
procedure.

In the model construction, instead of the
exact Stark+Doppler broadening functions we have used the
approximation described in Appendix B. Tests show that for
high members of the series the accuracy is of the order of 1 to
2 %, while for lower lines the errors are on the order of several
per cent. Once the model atmosphere is constructed, detailed
line profiles are calculated using the synthetic spectrum pro-
gram SYNSPEC (Hubeny, unpublished), where the exact line
broadening functions are used.

In Fig. 4 the run of temperature versus the column mass is
shown for T,=20000 K together with the differences of tem-
perature from model A. Arrows indicate the depths of formation
(defined as the monochromatic optical depth equal to 2/3) of four
spectral features: the centers of Ha and H+y, the continuum in
the vicinity of Hy, and the short—wavelength side of the Balmer
continuum at 1100 A.
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Several interesting conclusions may be drawn. First, the
differences in the temperature structure between the model N
(classical) and A (exact) are important. The classical model is
significantly cooler everywhere — in deep layers by more than
1000 K, and in the region of formation of the optical spectrum
by 300 to 400 K. The higher temperature in model A is ex-
plained by the classical backwarming effect: the flux blocked
by the broad hydrogen line wings (mainly of the Lyman series)
and by the pseudocontinuum region near the Lyman limit has
to be redistributed in the continua, thus heating the deep layers.

Second, the difference between models A and B is very small
throughout most of the atmosphere — of the order of 40 K or less
at the line and continuum forming layers and at most 80 K at the
surface. However, since the heat capacity of the surface layers
is very small, they are extremely sensitive to every detail of the
computational procedure. But in reality, these differences are
of little significance, for they do not significantly influence any
observable spectral feature and, moreover, the surface would
be dominated by metal line blanketing. Nevertheless, the small
difference in the temperature structure even in the surface lay-
ers indicates that our statistical procedures do indeed provide a
reliable description of the line merging problem.

Third, model S is about half way between A and N. This
indicates that roughly half of the backwarming is caused by the
wings of the lines up to n — 8 (n = 1 or 2), and the other half
by the cumulative effect of higher series members and the cor-
responding pseudocontinua. This conclusion is different from
that of Rauch & Werner (1988), who concluded that the dif-
ferences in the temperature structure between the N-type and
S-type models is negligible. However, they studied much hotter
stars, where the Lyman and Balmer line wings are narrower, and
therefore their influence much weaker. We return to this point
below.

From the standpoint of spectroscopic diagnostics, the effect
of differences in atmospheric structure on the emergent line pro-
files is crucial. Therefore, we present a comparison of profiles
for the Ho line (Fig. 5), Hy (Fig. 6), and the short-wavelength
portion of the Balmer continuum containing all Lyman lines
(Fig. 7). All the synthetic spectra are generated using the ex-
act line broadening functions (Vidal et al. (1973) for the first
four members of the Lyman and Balmer series; Butler (private
communication) for higher Balmer lines to Hyg).

Neglecting the Lyman and Balmer line merging yields a dif-
ference of about 4 % in the relative profile of Ha (at about 0.7 A
from the line center); and about 3 % for H~, which is important
and easily measurable. Also, the difference between models S
and N calculated with Stark and Doppler profiles reaches about
2 % . Therefore, the interpretation of modern high—quality spec-
trophotometric data require models of corresponding quality,
namely A- or B-type models. Differences between models A
and B are less than 0.3 %, which can be viewed as the upper
limit of the absolute accuracy of the present modeling tech-
niques. In real stellar atmospheres there will certainly be other
phenomena contributing to line profiles at a higher level, but
the important conclusion of the present study is that potentially
serious errors on the order of several per cent resulting from
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Fig. 5. Ha relative profiles (upper panel) and the difference of the
relative profiles (lower panel) for the four models displayed in Fig. 4.
The relative profile is defined as the computed absolute flux divided by
the computed continuum flux

incorrect treatment of higher Lyman and Balmer lines are now
well under control.

As may be deduced from Fig. 4, the short-wavelength por-
tion of the Balmer continuum should be influenced most, be-
cause it is formed where the temperature difference is largest.
This is dramatically demonstrated in Fig. 7, which shows rel-
ative errors up to 15% in the continuum and 35 % in the near
line wings! The internal accuracy of the modeling procedure is
verified as differences between A and B are less than 1 per cent.

Figures 8—11 show analogous comparisons for the models
at Te=35000 K. The temperature profile (Fig. 8) is similar to
that of the T=20000 K models. Differences between models
A and N are now smaller, as expected from the much narrower
Lyman and Balmer lines. In fact, these lines are so narrow (see
also Fig. 11) that the backwarming in the continuum—forming
and deeper layers is now merely 200 K, while the maximum dif-
ference occurs in the line—forming regions (about 700 K). This
indicates that that the primary effect responsible for the temper-
ature differences is the indirect non-LTE effect, first discussed
by Auer & Mihalas (1969; see also Mihalas 1978): the Balmer
lines provide an efficient channel for populating the n = 2 level,
thus enhancing the heating in the Balmer continuum. In the
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Fig. 6. The same as in Fig. 5, but for Hy

present context, the broader and more numerous lines (model
A as opposed to model N) enhance this heating effect.

The differences between models N and S (Doppler versus
Stark profiles) are now rather small (around 200 K), in agree-
ment with the results of Rauch & Werner (1988). Again, inter-
nal accuracy of the models is high; the temperature differences
between models A and B are less than 50 K in the line— and
continuum—forming regions, and reach about 100 K in the sur-
face layers.

A comparison of the Ha and Hy profiles is quite analogous
to the case of 20000 K model. The differences between models
A and N are of similar magnitude as before, while the differences
between N and S are generally smaller. The comparison of the
short-wavelength portion of the Balmer continuum and Lyman
lines reveals very small differences —about 2 per cent, in a sharp
contrast to the cooler models (cf Fig. 7).

5. Internal accuracy

Two questions remain remain regarding the internal consistency
of our models. The first concerns the extent to which the mod-
els are sensitive to the details of the treatment of explicit lines
(namely the number of frequency points, the type of frequency
quadrature, and the treatment of the background continuum).
The second concerns the sensitivity of the models to the parti-
tioning of levels into “explicit” and “higher” classes. All models
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Fig. 7. The computed absolute flux in the far-UV region, includ-
ing all Lyman lines, for the four models displayed in Figs. 4
to 6. The differences (lower panel) are expressed in per cent,
AH =100(H — Ha)/Ha

discussed in this section are at Teg= 20000 K in view of their
higher sensitivity to the treatment of hydrogen lines.

5.1. Constant versus frequency-dependent background opacity

All models considered above were calculated with the usual
assumption that the line opacity is symmetric about the line
center and that the background opacity is that at line center.
The lines are therefore represented by half of the total profile.
Frequency points and weights were calculated using a series of
3-point Simpson integrations with subsequent intervals doubled
in size away from line center. Lo to Ly were each represented
by 15 frequency points between 0 and 254 fiducial Doppler
widths from the center (the fiducial Doppler width corresponds
to T = 0.75T.¢), L6 by 13 points extending to 128 Doppler
widths, the lines 1 — 6 and 1 — 7 by 11 points extending to
62 Doppler widths, and the 1 — 8 line by 11 points extending
to 42 Doppler widths. Each Balmer line is represented by 11
points extending to 62 Doppler widths.

The Balmer lines do not present any significant problems.
Since the background continuum is very flat, the above repre-
sentation should be quite accurate. We have calculated a test
model with full profiles and exact (frequency-dependent) back-
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Fig. 8. An analogous plot as in Fig. 4, but for Tee= 35000 K, log g = 4

ground opacity for all Balmer lines, and have indeed found that
the resulting differences were at most a few K.

To study errors resulting from the approximate treatment of
the Lyman lines, we have calculated another model — A’ — in
which all Lyman lines are represented by full profiles, with the
frequency points placed symmetrically about line center; the
number of points is now doubled. From Fig. 12 we see that the
temperature differences between the = 20000 K models are
rather small — 50 K or less — in the line and continuum forming
layers, and increase to about 300 K at depth. The corresponding
differences in the Hy profile, displayed in Fig. 13, are very small
- of the order of 0.1 %. Thus, even for the Lyman lines, the half
profile is an excellent approximation. This conclusion is very
important because decreasing the number of frequency points
in the Lyman lines leads to considerable savings of computer
time.

5.2. Dependence on the number of explicit levels

Another crucial test of the reliability of our method is the com-
parison of models calculated with different number of explicit
levels. Taking the superlevel and superline description, the sen-
sitivity to the number of explicit levels should be very small, as
all levels higher than the last explicit level are included into the
corresponding superlevel, and all the opacity due to the higher
lines is treated within the corresponding superline. Obviously,
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Fig. 9. An analogous plot as in Fig. 5, but for Teg= 35000 K, log g = 4

we cannot expect a complete agreement, because: i) the super-
line treatment assumes that all levels forming a superlevel share
the common b-factor, while in reality these may vary, particu-
larly if we extend the superlevel levels down to relatively low
quantum number; ii) the notion of a superline is an inherently
approximate description of the line merging opacity. Therefore
different partitionings of the total line opacity into an “exact”
(explicit) part and an ODF part may give different results.

To study this phenomenon, we have calculated a model,
denoted X, where the number of explicit levels was increased
from 8 to 12, and the remaining levels are combined into the
superlevel. Figure 14 displays the differences in the tempera-
ture structure between models A, B, and X. The differences
throughout most of the atmosphere are again very small, within
50 K, rising to about 150 K in the surface layers. That model
X is actually closer to B than to A may be easily explained by
the fact that A suppresses slightly the low opacity part of the
Lyman line ODF (see Fig. 3) while in X this low-opacity part
is now considered explicitly, in closer correspondence to B, in
which the low-opacity part is never suppressed. Correspond-
ing differences in the Hry profile are plotted in Fig. 15. Again,
the differences are well within 0.4 %, a value quite consistent
with our absolute accuracy limit discussed in Sect. 4. These re-
sults demonstrate that the statistical method is indeed capable
of providing a robust and reliable method of calculating model
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Fig. 10. An analogous plot as in Fig. 6, but for Ter= 35000 K, log g = 4

stellar atmospheres taking into account level dissolution and
line-merging.

6. Conclusions

The basic goal of this paper was to show the extent to which
the regions of line merging near the series limits influence the
computed model stellar atmosphere structure and the predicted
spectrum. To make our results as useful as possible, we have
carefully examined the errors in spectral indicators resulting
from neglecting the line merging altogether, and from using
different treatments of these phenomenon. Based on our re-
sults, the user of a stellar atmosphere modeling code (such as
TLUSTY) may choose a different level of sophistication (and
therefore different demands on computer resources) according
to the required accuracy of modeling, which in turn reflects the
spectrophotometric accuracy of observations at hand.
Specifically, we ask the following question: what has to be
included into the modeling procedure to achieve accuracy of
all predicted spectral features to within 1 per cent, for a plane-
parallel, pure-hydrogen model atmosphere in hydrostatic and
radiative equilibrium? Although this question might seem triv-
ial, our results demonstrate that this is far from true. We have
deliberately limited ourselves to the simplest atmospheres, be-
cause without a proper understanding of this archetypical prob-

T.,=35000K, log g=4

T T LA S S S LN B |

.
ﬁ \

8x10°

2x10°

PR PR " P
1100 1200 1300

wavelength [4]

P S S B
900 1000

Fig. 11. An analogous plot as in Fig. 7, but for Tiz= 35000 K, logg=4

T,=20000K, log g=4

MEALLL BEL AL R AL N

AL LR S AL AL B AL e

AT
’
~

— A
-500( A ]

10-¢ 10-5 10-¢ 103 0.01 2
DM [g cm-?]

Fig. 12. Temperature difference between model A’ (analogous to model
A, but Lyman lines have full profiles and frequency-dependent back-
ground opacity) and model A (cf. Fig. 4 - Lyman lines have half profiles
and frequency-independent background opacity)
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T,,=20000K, log g=4
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Fig. 13. The Hy profiles (upper panel) and their difference (lower panel)

for the models displayed in Fig. 12. Differences are hardly visible on
the plot
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Fig. 14. Temperature differences between models A, B (cf Fig. 4),

and X (analogous to A, but with 12 instead of 8 lowest levels treated -

explicitly)

lem one cannot hope to achieve significant progress in modeling
more realistic stellar atmospheres.

An appropriate description of line merging involves two
separate problems. First, the detailed physics of level dissolu-
tion has to be considered. Since this phenomenon is usually
thought of in the context of high-density plasmas, all previous
formalisms were limited to LTE situations. However, for NLTE
stellar atmosphere models we must allow for the dissolution of
Rydberg states without the LTE assumption. This development
eliminates the necessity of adopting an arbitrary cutoff of the
number of higher LTE levels, traditionally taken to be 16 (after
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To=20000K, log g=4
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Fig. 15. The Hry profiles (upper panel) and their differences (lower
panel) for the models displayed in Fig. 14

Auer & Mihalas 1969). In fact, the number of levels taken into
account is no longer a mark of quality of a particular model,
because in our framework the number of effective levels varies
throughout the atmosphere.

Second, the complicated shape of the opacity in the line
merging regions causes significant numerical problems. To cope
with this difficulty, we have generalized the concept of the opac-
ity distribution function beyond its usual LTE context. We have
implement this idea in two different ways by introducing the
“line ODF” and the “continuum ODF”. This also enables us to
asses the internal accuracy of our statistical approach.

As an illustration of these techniques, we have calculated
several pure hydrogen models atmospheres for .wo effective
temperatures, Tex = 20000 and 35000 K, and discussed the
differences between models calculated with different treatments
of the line merging opacity. In particular, we have shown that the
errors in the predicted profiles of Balmer lines resulting from
neglecting line merging are typically of the order of 3 - 4 %,
while the errors in the far-UV portion of the Balmer continuum
reach 15 - 35 %. The errors generally decrease with increasing
effective temperature. At the same time, the internal accuracy of
the models is shown to be about or below 0.5 % for all predicted
spectral features.

The answer to the question posed above is that to obtain the
1 % accuracy level required for interpreting current spectropho-
tometric observations, models must include line merging. For-
tunately, the formalism developed in this paper provides such
an accurate and robust modeling technique.
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Appendix A: occupation probabilities

The occupation probability of level j is expressed in terms of
the microfield distribution function W(8; a, Z,) by

Be

w; = QB0 = W(B:a, Z;)dg, (AD

where the quantity (. is the critical field strength, and is given
by (HM, Eq. 4.35)

B = 83 x10%n23 23 | j~4, (A.2)
with
1 for 7 <3;
k= {(16/3)j/(1 w2, forj>3 0 A

Here Z, is the radiator charge (=0 for hydrogen), Z is the ionic
charge and a is the correlation parameter, given by

a=0.09n!/5T"1/2, (A.4)

For a = Z, = 0 the microfield distribution function is given
by the well-known Holtsmark distribution and the function Q(5)
can be accurately generated from arational expression (Hummer
1986).

When plasma correlation effects are important, ie. when
a > 0,the microfield distribution functions are those given, for
example, by Hooper (1966). Using a substantially modified ver-
sion of Hooper’s code, T. Schoning and Hummer (unpublished)
computed a two-dimensional fit to W{(8; a, Z,.) for a < 0.8 and
Z,.=0,1,...,5. From these fits the integral in (A.1) is easily
evaluated. Typical results are shown in Fig. 16. The numerical
results can be approximated by

w; = f/A+]), (A.5)

where

0.1402 (x + 4 Z, a®) 52
f = T3/Z <, (A.6)
1+0.1285 z 3;

and

z=~1+a)P, (A7)
For a = Z, = 0, the fit is particularly simple and is accurate
to 2 %. The maximum error in general is of the order of 20 %
except for very small 3, where w; is essentially zero.
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Fig. 16. The occupation probability function Q(8;a, Z,) for radia-
tor charge Z,, = 0 and Z, = 5, with indicated values of the plasma
parameter a

Appendix B: details of line broadening
The opacity in a line s — j is

xi; W) = [wini —win;(gi/9;)] 0i; (), (B.1)

where the cross-section o;; is expressed through the normalized
profile coefficients ¢;; by

7I'62

o (V) = — [fo5W) + (fii — F) W) -

(B.2)
mc

Here f;; is the (total) oscillator strength, and f{? the Stark oscil-
lator strength, which is the part of the line f-value contributed by
components displaced by an electric field (Underhill & Wadell
1959). These two f—values are equal when (i + j) is even. The
second term in Eq. (B.2) is the standard Doppler profile (we ne-
glect resonance and natural broadening for simplicity, but these
may be easily included if needed).

In the following, we will be concerned only with the Stark
part of the profile. We found that the following approximation
gives a simple and surprisingly accurate representation of the
profile. This approach is implemented in the program TLUSTY.
First, we express the distance form the line center through a
convenient parameter 3 (after Griem 1960),

g = (B.3)

RK;;’
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where Fy is the normal field strength, F = 1.25 % 10‘9n§/ 3, and
K;; is the coefficient of the asymptotic Hotsmark profile, tabu-
lated by Griem. Beyond the tabular values, we use the asymp-
totic formula

,L'4 j4

K;j = 55x 10—4],2 (B.4)

— 42’
Next, we express the Doppler width in terms of 3 units, viz

c 1

2kT
————Avp =
VgFOKij YD

vk K;; V my

Bp = +v%, (B.5)
where my is the atomic mass, and vy the microturbulent ve-
locity. The quantity Bp expresses the relative importance of the
Doppler and Stark broadening: the larger the 8, the more dom-
inant the Doppler broadening. Next, we introduce the Doppler
and the asymptotic Holtsmark broadening functions,

1
ép = ———— exp[—(3/Bp)*],

B.6
NS (®-6)

and
¢u =387

Equation (B.7) applies only for hydrogen lines where both elec-
trons and protons contribute in the equal manner. For He 11
(and other hydrogenic) lines, where only electrons contribute,
éu = (3/2)3~3/2. Here we are concerned only with hydrogen.
The next step is to find the value of 3 where both profiles
have the same value, i.e to solve a transcendental equation

B.7)

x> —(5/2)lnz — C =0, (B.8)

where C = (3/2)In8p — In(34/7); and z is the usual dimen-
sionless distance from the line center, z = 3/8p = Av/Avp.
Equation (B.8) follows on taking the logarithm of Egs. (B.6)
and (B.7) and equating their right hand sides.

As Eq. (B.8) has a solution only if C > (5/4 —5/21n5/2),
ie. for C > 0.97, or Bp > ,@%ﬁ = 5.82, we consider two
different regimes, p > %", and Bp < GBS separately.

)If6p > ﬂ%"‘, Doppler broadening is dominant in the line
core, and we may simply join the Doppler profile in the core and
the asymptotic Holtsmark profile in the wing. Equation (B.8) for
the division point has two real solutions. We take the larger one,
denoted as 8*, because the smaller always lies in the Doppler
core, and set the line profile coefficient to

Scay _ ) ®D(B), ifB< B
AT VAR

The solution of Eq. (B.8) is very easily found by Newton’s
method, with the initial estimate zo = v/C[1+(5/4)In C/(4C —
5)]forC > 1.26,and zg = v/ C + 0.28 elsewhere. The iterations
cycle is z,41 = z, — P(z,,)/P'(z,), where P is the Lh.s. of
Eq. (B.8), and P’ = 2z — 5/2 is its derivative. The procedure
converges very rapidly, yielding a converged solution typically
in two or three iterations. §* is then given by 8* = ZconvOD-

ii) If Bp < B, Stark broadening is dominant everywhere,
and in the first approximation the Doppler broadening may be

(B.9)
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neglected. Stark broadening may be approximated by an empir-
ical formula which gives a reasonably accurate fit to the calcu-
lations of Edmonds et al. (1967), namely

0.08, if 3 < 1.14;

¢°(B) = { apexpla; In B+ ax(In B)?], if1.14 < B < 11.4;,
u(B), if 6> 11.4.

(B.10)

with ap = 0.07209481, a; = 0.4796232, a, = 0.5758228.
‘Finally, the usual profile coefficient in frequency units is
given by
c

V%F()Kij

#(Av) = (B (B.11)
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